EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Série b 20 mars 2025

Exercice 1. e Matrice A. Le polynéme caractéristique est
xa=(X—-2*%(X?—4X+4)=(X-2)*.

Il n’y a donc qu'une seule valeur propre, A = 2 et le polynéme minimal doit donc étre du
type pa = (X —2)* avec 1 < k < 4 (car la multiplicité de chaque racine dans le polynome
minimal est inférieure ou égale a sa multiplicité dans le polynéme caractéristique).

On cherche la plus petite valeur de k telle que (A — 2I4)* = 0. Pour cela, on calcule :

010 -1 000 O

o100 -1 > | 000 0

A=2L)=1 7 1 ¢ of & A2 =L4 1 5 4

010 —1 000 O

Ces matrices ne sont pas nulles. Nous calculons plus loin :

000 O 010 —1 0000
000 O 010 —1 0000

— . 3: — 2 —_ ). e J—
(A=21a)" = (A=21)Y(A-21L) 010 —1 010 0 0000
000 O 010 -1 0000

qui est la matrice nulle. Ainsi le polynome (X — 2)? n’est pas annulateur de A, alors que
(X —2)3 Dest.

Le polynome minimal est donc puy = (X — 2)3.
e Matrice B. Le polyndme caractéristique est xp = (X —1)?(X —2) . Par conséquent,

le polyndéme minimal est up = (X — 1)¥(X —2), avec 1 < k < 2 (mémes racines, avec
multiplicités plus petites ou égales). Un calcul simple donne

4 0 4b
(B —13)(B —21;) = b0 b |,
—4b 0 —4b

qui est la matrice nulle si et seulement si b = 0. Par conséquent on a

(X —1)(X—2) sib=0,

Ha(X) = {(X— 1)2(X —2) sib#0.

Exercice 2. (a) On montre d’abord que 0 est valeur propre de tout endomorphisme
nilpotent f. Supposons que f est nilpotent d’ordre m. Alors f™! # 0 et f™ = 0. La
condition f™~1 # 0 signifie qu'il existe v € V tel que w = f™ 1 (v) A0 e V.
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Alors f(w) = f™(v) = 0 = 0 - w. Donc w est vecteur propre et la valeur propre
correspondante est A = 0.

Montrons maintenant que 0 est la seule valeur propre de f. Supposons que \ est
valeur propre. Alors il existe un vecteur non nul v € V' tel que f(v) = Av. Alors on vérifie
facilement par récurrence que f™(v) = A™wv. Mais f™ = 0 et v # 0, donc on doit avoir
A=0.

(b) Les raisonnements ci-dessus n’utilisent aucune hypothese sur la dimension de V/,
donc le résultat précédent est encore vrai si dim(V') = oo.

(c) La réciproque de (a) n’est pas vraie en général. Par exemple I’endomorphisme de
R3 dont la matrice est

~—

a pour polyndme caractéristique x4 = X (X? + 1). Donc il n’y a qu'une valeur propre
réelle, qui est A = 0, cependant cette endomorphisme n’est pas nilpotent.

Toutefois si on considere A comme matrice complexe, alors le polyndéme caractéristique
se factorise en y4 = X (X —1i)(X +1), il y a donc des valeurs propres non nulles, qui sont
+1.

Au final la situation est la suivante : Si f est un endomorphisme d’un espace vectoriel

de dimension finie dont le polynome caractéristique est scindé, alors f est nilpotent si et
seulement si o(f) = {0}.

La preuve est presque immédiate puisqu'un tel endomorphisme est triangulable.

Exercice 3. (a) Si A% = I3, cela implique que P = X° — 1 est un polyndéme annulateur
de A. Or, sur le corps des complexes, ce polynéme est scindé a racines simples car on
peut le factoriser comme produit de monoémes de degré 1 :

P=(X°-1)=(X-DX - X =X =) X -
— (X 1) (X_e%) (X_e*?> (X—e%> (X—e*%),

- . 2mi 27 . m . - :
ou l'on a noté ( =e5 = cos = + 7sin =) Donc le polynéme minimal est aussi
un produit de monomes de degré 1 par conséquent A est diagonalisable.

(Remarquons que 'argument nous dit que le spectre complexe de A est un sous-
ensemble de {¢, (2, (3, ¢4 1}, on sait qu’il y a au plus 3 valeurs propres car A est une
matrice de taille 3).
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(b) L’idée est de partir de la matrice

1
B=10
0

O vy O

0
v
¢

dont le polynéme caractéristique est réel (penser a la derniere série!) et de la conjuguer
pour la rendre réelle. La matrice de passage est de plus de la forme

Par exemple, on peut prendre

Finalement, on trouve la matrice

1 0 0
A=10 cos (%’T) —sin (2?”)
0

sin (%) cos (%)

Autrement, on peut penser a la section 13 du polycopié sur les endormorphismes réels.

Cette matrice représente une rotation d’angle 27/5 autour de l'axe (Ox) dans R?
(on verra cela précisément dans le cours). Comme A = PBP~! on a également A°> =
PB°P~! =15 car ¢ est une racine 5-éme de I'unité. Le polynome caractéristique de A est

x=—-(X-1) (XQ—QCOS(%”)XH),

qui n’est pas scindé dans R[X], ce qui implique que A n’est pas diagonalisable (bien siir
une rotation n’est jamais diagonalisable sur les réels, sauf si 'angle de rotation est égal a
7 ou 0).

Remarque 1. Si vous vous amusez a vérifier le résultat a I'ordinateur, vous trouverez la
matrice

1 0 0
0 IVE—1 —1v/2V5+10
0 1v2v5+10 IVE—1
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En effet, on a

()15

) 2 5++5
sin| — | =4/ ——
5 8

Sauriez-vous retrouver ce résultat directement ? !

Exercice 4. On suppose que [ est nilpotent d’ordre m, alors par définition f™ = 0 et
f™ 1 # 0. On peut donc trouver un vecteur u € V tel que f™ !(u) # 0. Il faut alors
prouver que les vecteurs {uq, ..., u,,} définis par comme dans 1’énoncé sont linéairement
indépendants. Supposons que

Zajuj = Zajfm_j(u) =0.
j=1 j=1

En appliquant f™! & cette équation, on trouve
m
0= oy f" Tu = a7 ),
j=1

et 'hypothése f™~! # 0 entraine que «,, = 0. Mais alors on a

m—1 m—1
D aguy = f"(u) =0,
j=1 J=1

et en appliquant f™ 2 a cette relation on trouve que a,,_; = 0. En répétant I’argument, on
trouve que a,;, = @1 = -+ = a1 = 0. On a prouvé que {uq, ..., u,} sont linéairement
indépendants. Ces vecteurs forment donc une base puisque m = dim(V'). On retrouve
I’argument donné en cours.

1. La raison pour laquelle cos (%”) peut s’exprimer sous forme de radicaux vient du fait que le penta-
gone peut se construire a la régle et au compas. Gauss, & 19 ans a peine, montra que 1’heptadécagone,
ou polygone régulier a 17 cotés, est également un nombre constructible. C’est toujours le cas pour les
polygones réguliers dont le nombre de c6té est un nombre premier de Fermat, c’est-a-dire, un nombre
premier de la forme F, = 22" 4+ 1 (les seuls nombres premiers de Fermat connus sont Fy = 2+ 1 = 3,
F1=2241=5F=2"4+1=17, F3;,=284+1=257 et F; = 2' + 1 =65537; on peut donc exprimer
cos(2m/65537) sous forme de radicaux!).



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Série b 20 mars 2025

Dans cette base, la matrice f est donnée par

10 --- 0
1
0
Do o1
000 -0

On retrouve le bloc de Jordan J,,(0) vu en cours.

Exercice 5. (a) La définition est &7 (k) = dim (Ker(f — AIdy)*).
(b) En utilisant que Ker(g) = {0} et go fo = fiog, on a
fa(x) =0 < g(fa(x)) =0 & go fofz) = ficg(z) =0 & fi(g(z)) =0.

Ceci montre que = € Ker(f;) < g(x) € Kerf;. Donc g induit une bijection de Ker(fs)
vers Ker(f;) et par conséquent dim (Ker(f;)) = dim (Ker(f1)).

Le méme raisonnement montre dim (Ker(f, — A1dy)*) = dim (Ker(f; — AIdy)¥) car
si fi et fo sont conjugués, alors (f; — Ady)* et (f2 — AIdy)¥ le sont aussi.

(c) 11 suffit d’appliquer le résultat de 1'Exercice 1.10 (Série 1) a I’endomorphisme
f— M dy)

Exercice 6. 1. La réponse est négative. Un exemple simple est

11 1 0 01
A—D+N—<02), avec D—(02>etN—(OO)

La matrice D est diagonale (donc diagonalisable) et N? = 0, donc N est une

matrice nilpotente. Cependant, DN = ( 8 (1) ) + ( 8 (2) ) = ND.

Il ne faut pas confondre avec le théoreme de décomposition de Dunford qui dit que
pour toute matrice carrée A € M, (C) il existe D diagonalisable et N nilpotente telles
que A= D+ N DN = ND. La condition de commutation des deux matrices est une
condition supplémentaire et n’est pas une conséquence des autres conditions comme le
montre I’exemple précédent.
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2. La réponse est négative. Par exemple le polynome minimal de

000
B=10200
010

est xp = X2, il est de degré d = 2, qui ne divise pas 3. (On a toujours d < n mais
il n’y a aucune raison que d divise n.)

3. La réponse est positive. On rappelle que les racines du polynéme minimal d’une
matrice sont exactement les valeurs propre de cette matrice. Par conséquent si
1a(0) # 0, alors 0 n’est pas valeur propre de A, ce qui signifie que Ker(A) = {0}
et donc A est inversible.

Exercice 7. (a) La linéarité de T, se vérifie directement :

(ap+BY)(x+a)=(a-p)(x+a)+(B-¢)(x+a)

(b) ¢ € Ker(T,) si ¢(z 4+ a) = 0 pour tout x € R, ce qui signifie que ¢ est la fonction
nulle. Donc Ker(7;) = 0.

(¢) ¢ est une fonction propre pour A = 1si T, = ¢, ce qui signifie que p(z+a) = ()
pour tout x € R. En d’autres termes ¢ est une fonction périodique de période a — par

2m
exemple p(z) = cos (—x)
a

(d) La fonction ¢ (z) = exp(a x) est une fonction propre car
Ta(¢)($) _ 6a(x+a) — 09T — )\w@j)’

avec la valeur propre A = e®“.

Exercice 8. On trouve les matrices

1 a o> d 01 00
0 1 2a 3a? 00 20
To= 00 1 3a D= 000 3
00 O 1 0000
Remarque : On peut facilement vérifier sur ces matrices que
2 3
T,=Ty—aD+ 2 p?— L p3,

2! 3!
Le méme exercice sur l’espace &2, des polynomes de degré au plus m montrerait que

mo Nk
T, = Z %Dk, ce qui exprime la formule de Taylor pour les polynomes de degré au
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Exercice 9. 1. La fonction p(z) = e** vérifie D(¢) = a¢. C’est donc une fonction
propre pour 'opérateur D avec valeur propre «.
2. On vérifie la formule par récurrence. Pour m = 1 on a e**D(e”**h) = —ah+Dh =
(D — aldy)h. Supposons maintenant que le résultat vrai pour m et montrons le
pour m+ 1 :

(D — aldy)™h = (D — aldy)(D — aldy)™h = (D — aldy)e®* D™ (e “"h)
— OéeaxDm(efaxh) + eaxDerl (efaxh) _ aeaa:Dm(efaxh)
— eaa:Dm—i—l <€—amh)7
qui est la formule & démontrer.

3. Soit ¢ € C*(R) telle que (D — aldy)™p(x) = 0. Par le résultat précédent, on a
e D" (e~ *p(x)) = 0, ce qui équivaut a dire que

D g(x) =0,

car I’exponentielle ne s’annule jamais. Cette condition est vérifiée si et seulement

si e~ p(x) est un polynéme de degré strictement plus petit que m. Ce qui signifie

que ¢(x) = e*q(x), avec ¢(x) un polyndéme de degré strictement inférieur a m.
4. Une base de Ker(D — aIdy)™ est donnée par

B = {ea’”, x e, J;2ea‘”, e xmflem}

(la vérification est facile).
5. Par définition, . C V est le noyau de 'opérateur linéaire T': V' — V défini par
T = & 3 i +4Id=D?-3D*+41d
 da3 dx? B '
c’est donc un sous-espace vectoriel (car le noyau d’un opérateur linéaire est tou-
jours un sous-espace vectoriel).
6. L’opérateur T peut s’écrire P(D), avec P(X) = X3 —3 X2+ 4. On peut factoriser
P=X?-3X?+4=(X+1)(X —2)?% et les deux polynome (X + 1) et (X — 2)?
sont premiers entre eux. Le Lemme des Noyaux nous dit alors que

& = Ker(p(D)) = Ker(D + 1) @ Ker(D — 2)*.

Par le point 4. on sait qu'une base de Ker(D + 1) est donnée par {e~*} et qu’une
base de Ker(D — 2)? est donnée par {e**, x e?**}. Par conséquent, une base de .
est {77, €% x e}

7. Par le point précédent on sait que toute solution de I’équation différentielle T'(h) =
0 s’écrit de fagon unique h(z) = A\j e + Ay e?* + A3z e*® avec A\j, Ao, A3 € R. En
considérant les conditions initiales proposées, on trouve le systeme d’équations



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Série b 20 mars 2025

AL —2 X =1
—)\1—|—2)\2—|— )\320
A A4 +40 =1

On peut résoudre ce systeme linéaire par la méthode de Gauss-Jordan ou une autre

méthode. On trouve que \; = 3 Ay = 3 et A3 = —1,. On a finalement la solution
voulue : 1 5
u(x) = ge_x + 5629& —ze¥

On peut facilement vérifier que u est solution de 1’équation différentielle et vérifie
les conditions initiales données au point 5.



