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Exercice 1. • Matrice A. Le polynôme caractéristique est

χA = (X − 2)2(X2 − 4X + 4) = (X − 2)4 .

Il n’y a donc qu’une seule valeur propre, λ = 2 et le polynôme minimal doit donc être du
type µA = (X−2)k avec 1 ≤ k ≤ 4 (car la multiplicité de chaque racine dans le polynôme
minimal est inférieure ou égale à sa multiplicité dans le polynôme caractéristique).

On cherche la plus petite valeur de k telle que (A− 2I4)k = 0. Pour cela, on calcule :

(A− 2·I4) =


0 1 0 −1
0 1 0 −1
0 1 0 0
0 1 0 −1

 et (A− 2·I4)2 =


0 0 0 0
0 0 0 0
0 1 0 −1
0 0 0 0

 .

Ces matrices ne sont pas nulles. Nous calculons plus loin :

(A−2·I4)3 = (A−2·I4)2(A−2·I4) =


0 0 0 0
0 0 0 0
0 1 0 −1
0 0 0 0




0 1 0 −1
0 1 0 −1
0 1 0 0
0 1 0 −1

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

qui est la matrice nulle. Ainsi le polynôme (X − 2)2 n’est pas annulateur de A, alors que
(X − 2)3 l’est.

Le polynôme minimal est donc µA = (X − 2)3.

• Matrice B. Le polynôme caractéristique est χB = (X−1)2(X−2) . Par conséquent,
le polynôme minimal est µB = (X − 1)k(X − 2), avec 1 ≤ k ≤ 2 (mêmes racines, avec
multiplicités plus petites ou égales). Un calcul simple donne

(B − I3)(B − 2 I3) =

 4b 0 4b
b 0 b

−4b 0 −4b

 ,

qui est la matrice nulle si et seulement si b = 0. Par conséquent on a

µB(X) =
{

(X − 1)(X − 2) si b = 0,
(X − 1)2(X − 2) si b ̸= 0.

Exercice 2. (a) On montre d’abord que 0 est valeur propre de tout endomorphisme
nilpotent f . Supposons que f est nilpotent d’ordre m. Alors fm−1 ̸= 0 et fm = 0. La
condition fm−1 ̸= 0 signifie qu’il existe v ∈ V tel que w = fm−1(v) ̸= 0 ∈ V .
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Alors f(w) = fm(v) = 0 = 0 · w. Donc w est vecteur propre et la valeur propre
correspondante est λ = 0.

Montrons maintenant que 0 est la seule valeur propre de f . Supposons que λ est
valeur propre. Alors il existe un vecteur non nul v ∈ V tel que f(v) = λv. Alors on vérifie
facilement par récurrence que fm(v) = λmv. Mais fm = 0 et v ̸= 0, donc on doit avoir
λ = 0.

(b) Les raisonnements ci-dessus n’utilisent aucune hypothèse sur la dimension de V ,
donc le résultat précédent est encore vrai si dim(V ) = ∞.

(c) La réciproque de (a) n’est pas vraie en général. Par exemple l’endomorphisme de
R3 dont la matrice est

A =

 0 −1 0
1 0 0
0 0 0


a pour polynôme caractéristique χA = X(X2 + 1). Donc il n’y a qu’une valeur propre
réelle, qui est λ = 0, cependant cette endomorphisme n’est pas nilpotent.

Toutefois si on considère A comme matrice complexe, alors le polynôme caractéristique
se factorise en χA = X(X − i)(X + i), il y a donc des valeurs propres non nulles, qui sont
±i.

Au final la situation est la suivante : Si f est un endomorphisme d’un espace vectoriel
de dimension finie dont le polynôme caractéristique est scindé, alors f est nilpotent si et
seulement si σ(f) = {0}.

La preuve est presque immédiate puisqu’un tel endomorphisme est triangulable.

Exercice 3. (a) Si A5 = I3, cela implique que P = X5 − 1 est un polynôme annulateur
de A. Or, sur le corps des complexes, ce polynôme est scindé à racines simples car on
peut le factoriser comme produit de monômes de degré 1 :

P = (X5 − 1) = (X − 1)(X − ζ)(X − ζ2)(X − ζ3)(X − ζ4)

= (X − 1)
(
X − e

2πi
5

)(
X − e− 2πi

5

)(
X − e

4πi
5

)(
X − e− 4πi

5

)
,

où l’on a noté ζ = e
2πi

5 = cos
(

2π
5

)
+ i sin

(
2π
5

)
. Donc le polynôme minimal est aussi

un produit de monômes de degré 1 par conséquent A est diagonalisable.
(Remarquons que l’argument nous dit que le spectre complexe de A est un sous-

ensemble de {ζ, ζ2, ζ3, ζ4, 1}, on sait qu’il y a au plus 3 valeurs propres car A est une
matrice de taille 3).
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(b) L’idée est de partir de la matrice

B =

1 0 0
0 ζ 0
0 0 ζ


dont le polynôme caractéristique est réel (penser à la dernière série !) et de la conjuguer
pour la rendre réelle. La matrice de passage est de plus de la forme

P =

1 0 0
0 a b
0 c d


Par exemple, on peut prendre

P =

1 0 0
0 1 1
0 −i i


Finalement, on trouve la matrice

A =

1 0 0
0 cos

(2π
5

)
− sin

(2π
5

)
0 sin

(2π
5

)
cos

(2π
5

)


Autrement, on peut penser à la section 13 du polycopié sur les endormorphismes réels.
Cette matrice représente une rotation d’angle 2π/5 autour de l’axe (Ox) dans R3

(on verra cela précisément dans le cours). Comme A = PBP−1, on a également A5 =
PB5P−1 = I5 car ζ est une racine 5-ème de l’unité. Le polynôme caractéristique de A est

χ = −(X − 1)
(
X2 − 2 cos

(
2π
5

)
X + 1

)
,

qui n’est pas scindé dans R[X], ce qui implique que A n’est pas diagonalisable (bien sûr
une rotation n’est jamais diagonalisable sur les réels, sauf si l’angle de rotation est égal à
π ou 0).

Remarque 1. Si vous vous amusez à vérifier le résultat à l’ordinateur, vous trouverez la
matrice  1 0 0

0 1
4

√
5 − 1

4 −1
4

√
2

√
5 + 10

0 1
4

√
2

√
5 + 10 1

4

√
5 − 1

4

 .
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En effet, on a 
cos

(
2π
5

)
= 1

4

(√
5 − 1

)
sin

(
2π
5

)
=

√
5 +

√
5

8

Sauriez-vous retrouver ce résultat directement ? 1

Exercice 4. On suppose que f est nilpotent d’ordre m, alors par définition fm = 0 et
fm−1 ̸= 0. On peut donc trouver un vecteur u ∈ V tel que fm−1(u) ̸= 0. Il faut alors
prouver que les vecteurs {u1, . . . , um} définis par comme dans l’énoncé sont linéairement
indépendants. Supposons que

m∑
j=1

αjuj =
m∑

j=1

αjf
m−j(u) = 0.

En appliquant fm−1 à cette équation, on trouve

0 =
m∑

j=1

αjf
2m−1−ju = αmf

m−1(u),

et l’hypothèse fm−1 ̸= 0 entraîne que αm = 0. Mais alors on a

m−1∑
j=1

αjuj =
m−1∑
j=1

αjf
m−j(u) = 0,

et en appliquant fm−2 à cette relation on trouve que αm−1 = 0. En répétant l’argument, on
trouve que αm = αm−1 = · · · = α1 = 0. On a prouvé que {u1, . . . , um} sont linéairement
indépendants. Ces vecteurs forment donc une base puisque m = dim(V ). On retrouve
l’argument donné en cours.

1. La raison pour laquelle cos
( 2π

5
)

peut s’exprimer sous forme de radicaux vient du fait que le penta-
gone peut se construire à la règle et au compas. Gauss, à 19 ans à peine, montra que l’heptadécagone,
ou polygone régulier à 17 côtés, est également un nombre constructible. C’est toujours le cas pour les
polygones réguliers dont le nombre de côté est un nombre premier de Fermat, c’est-à-dire, un nombre
premier de la forme Fn = 22n + 1 (les seuls nombres premiers de Fermat connus sont F0 = 2 + 1 = 3,
F1 = 22 + 1 = 5, F2 = 24 + 1 = 17, F3 = 28 + 1 = 257 et F4 = 216 + 1 = 65537 ; on peut donc exprimer
cos(2π/65537) sous forme de radicaux !).
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Dans cette base, la matrice f est donnée par
0 1 0 · · · 0
0 0 1 ...
... 0 0 . . . ...
... ... . . . 1
0 0 0 · · · 0


On retrouve le bloc de Jordan Jm(0) vu en cours.

Exercice 5. (a) La définition est δf,λ(k) = dim
(
Ker(f − λ IdV )k

)
.

(b) En utilisant que Ker(g) = {0} et g ◦ f2 = f1 ◦ g, on a

f2(x) = 0 ⇔ g(f2(x)) = 0 ⇔ g ◦ f2(x) = f1 ◦ g(x) = 0 ⇔ f1(g(x)) = 0.

Ceci montre que x ∈ Ker(f2) ⇔ g(x) ∈ Kerf1. Donc g induit une bijection de Ker(f2)
vers Ker(f1) et par conséquent dim (Ker(f2)) = dim (Ker(f1)).

Le même raisonnement montre dim
(
Ker(f2 − λ IdV )k

)
= dim

(
Ker(f1 − λ IdV )k

)
car

si f1 et f2 sont conjugués, alors (f1 − λ IdV )k et (f2 − λ IdV )k le sont aussi.

(c) Il suffit d’appliquer le résultat de l’Exercice 1.10 (Série 1) à l’endomorphisme
f − λ IdV .)

Exercice 6. 1. La réponse est négative. Un exemple simple est

A = D +N =
(

1 1
0 2

)
, avec D =

(
1 0
0 2

)
et N =

(
0 1
0 0

)
La matrice D est diagonale (donc diagonalisable) et N2 = 0, donc N est une

matrice nilpotente. Cependant, DN =
(

0 1
0 0

)
̸=

(
0 2
0 0

)
= ND.

Il ne faut pas confondre avec le théorème de décomposition de Dunford qui dit que
pour toute matrice carrée A ∈ Mn(C) il existe D diagonalisable et N nilpotente telles
que A = D + N DN = ND. La condition de commutation des deux matrices est une
condition supplémentaire et n’est pas une conséquence des autres conditions comme le
montre l’exemple précédent.
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2. La réponse est négative. Par exemple le polynôme minimal de

B =

 0 0 0
0 0 0
0 1 0


est χB = X2, il est de degré d = 2, qui ne divise pas 3. (On a toujours d ≤ n mais
il n’y a aucune raison que d divise n.)

3. La réponse est positive. On rappelle que les racines du polynôme minimal d’une
matrice sont exactement les valeurs propre de cette matrice. Par conséquent si
µA(0) ̸= 0, alors 0 n’est pas valeur propre de A, ce qui signifie que Ker(A) = {0}
et donc A est inversible.

Exercice 7. (a) La linéarité de Ta se vérifie directement :
(αφ+ β ψ)(x+ a) = (α · φ) (x+ a) + (β · ψ) (x+ a)

(b) φ ∈ Ker(Ta) si φ(x + a) = 0 pour tout x ∈ R, ce qui signifie que φ est la fonction
nulle. Donc Ker(Ta) = 0.

(c) φ est une fonction propre pour λ = 1 si Taφ = φ, ce qui signifie que φ(x+a) = φ(x)
pour tout x ∈ R. En d’autres termes φ est une fonction périodique de période a — par
exemple φ(x) = cos

(
2π
a
x

)
.

(d) La fonction ψ(x) = exp(αx) est une fonction propre car
Ta(ψ)(x) = eα(x+a) = ea αeα x = λψ(x),

avec la valeur propre λ = ea α.

Exercice 8. On trouve les matrices

Ta =


1 a a2 a3

0 1 2a 3a2

0 0 1 3a
0 0 0 1

 D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Remarque : On peut facilement vérifier sur ces matrices que

Ta = I3 − aD + a2

2!D
2 − a3

3!D
3.

Le même exercice sur l’espace Pm des polynômes de degré au plus m montrerait que

Ta =
m∑

k=0

(−a)k

k! Dk, ce qui exprime la formule de Taylor pour les polynômes de degré au

plus m.
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Exercice 9. 1. La fonction φ(x) = eαx vérifie D(φ) = αφ. C’est donc une fonction
propre pour l’opérateur D avec valeur propre α.

2. On vérifie la formule par récurrence. Pour m = 1 on a eαxD(e−αxh) = −αh+Dh =
(D − α IdV )h. Supposons maintenant que le résultat vrai pour m et montrons le
pour m+ 1 :

(D − α IdV )m+1h = (D − α IdV )(D − α IdV )mh = (D − α IdV )eαxDm(e−αxh)
= αeαxDm(e−αxh) + eαxDm+1(e−αxh) − αeαxDm(e−αxh)
= eαxDm+1(e−αxh),

qui est la formule à démontrer.
3. Soit φ ∈ C∞(R) telle que (D − α IdV )mφ(x) = 0. Par le résultat précédent, on a
eαxDm(e−αxφ(x)) = 0, ce qui équivaut à dire que

Dm(e−αxφ(x)) = 0,

car l’exponentielle ne s’annule jamais. Cette condition est vérifiée si et seulement
si e−αxφ(x) est un polynôme de degré strictement plus petit que m. Ce qui signifie
que φ(x) = eαxq(x), avec q(x) un polynôme de degré strictement inférieur à m.

4. Une base de Ker(D − α IdV )m est donnée par

B =
{
eαx, x eαx, x2eαx, ..., xm−1eαx

}
(la vérification est facile).

5. Par définition, S ⊂ V est le noyau de l’opérateur linéaire T : V → V défini par

T = d3

dx3 − 3 d2

dx2 + 4 Id = D3 − 3D2 + 4 Id.

c’est donc un sous-espace vectoriel (car le noyau d’un opérateur linéaire est tou-
jours un sous-espace vectoriel).

6. L’opérateur T peut s’écrire P (D), avec P (X) = X3 − 3X2 + 4. On peut factoriser
P = X3 − 3X2 + 4 = (X + 1)(X − 2)2, et les deux polynôme (X + 1) et (X − 2)2

sont premiers entre eux. Le Lemme des Noyaux nous dit alors que

S = Ker(p(D)) = Ker(D + 1) ⊕ Ker(D − 2)2.

Par le point 4. on sait qu’une base de Ker(D + 1) est donnée par {e−x} et qu’une
base de Ker(D − 2)2 est donnée par {e2x, x e2x}. Par conséquent, une base de S
est {e−x, e2x, x e2x}.

7. Par le point précédent on sait que toute solution de l’équation différentielle T (h) =
0 s’écrit de façon unique h(x) = λ1 e

−x + λ2 e
2x + λ3 x e

2x avec λ1, λ2, λ3 ∈ R. En
considérant les conditions initiales proposées, on trouve le système d’équations
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
λ1 − 2λ2 = 1

−λ1 + 2 λ2 + λ3 = 0
λ1 + 4 λ2 + 4λ3 = −1

On peut résoudre ce système linéaire par la méthode de Gauss-Jordan ou une autre
méthode. On trouve que λ1 = 1

3, λ2 = 2
3 et λ3 = −1,. On a finalement la solution

voulue :
u(x) = 1

3e
−x + 2

3e
2x − x e2x.

On peut facilement vérifier que u est solution de l’équation différentielle et vérifie
les conditions initiales données au point 5.
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